B.Sc.DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - APRIL 2019
/ 17UMT3MC02- VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS

Date: 25-04-2019
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

PART -A

Answer ALL questions
(10 X $2=20$ Marks)

1. Find the unit vector normal to the surface $x^{2}+3 y^{2}+2 z^{2}=6$ at the point $\left.(2, \|), 1\right)$.
2. Find the value of ' a ' so that the vector $\vec{F}=(z+3 y) \vec{\imath}+(x-2 z) \vec{\jmath}+(x+a z)$ ir is solenoidal.
3. Evaluate $\int_{C} \vec{F}$. $d \vec{r}$ where $\vec{F}=t^{2} \vec{\imath}+y^{2} \vec{\jmath}$ along the line $y=x$ from $A(0,0)$ to $B(1,1)$.
4. Show that the value of the interral $\int_{C} \vec{F} . d \vec{r}$ is independent of the path C, where $\vec{F}=\left(e^{x} Z-\right.$ $2 x y) \vec{\imath}+\left(1-x^{2}\right) \vec{\jmath}+\left(e^{x}+z\right) \vec{n}$.
5. State Stoke's theorem.
6. Show that $\iint_{S} \vec{r} . \hat{n} d S=3 V$, where V is the volume enclosed by a closed surface S.
7. Solve $\frac{d y}{d x}-\frac{y+2}{x-1}=0$.
8. Solve $p^{2}-5 p+6=0$.
9. Find the complete integral of $\left(D^{2}+16\right) y=2$.
10. Convert $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\sin \left(\log x^{2}\right)$ into linear differential equation with constant coefficients.

PART - B

Answer Any FIVE Questions
(5 X $8=40$ Marks)
11. Prove that $\operatorname{div} \vec{r}=3$ and $\operatorname{curl} \vec{r}=0$, wherer is the position vector at the point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
12. If $u=x+y+z,: v=y^{2}+z^{2}, w=y z+z x+x y$, Prove that $(\nabla u) \cdot(\nabla v \times \nabla w)=0$.
13. If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and $|\vec{r}|=r$, then prove that $\nabla\left(r^{n}\right)=n r^{n-2} \cdot \vec{r}$.
14. Evaluate $\int_{C} x y d x+x y^{2} d y$ by Stoke's theorem where C is the square in the $X Y$ plane with vertices $(1,0),(-1,0),(0,1)$ and $(0,-1)$.
15. Solve $\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$.
16. Solve $x p^{2}-y p-x=0$.
17. Solve $\left(D^{2}-2 D+1\right) y=\mathrm{e}^{3 x}$.
18. Solve $\left(D^{2}+3 D+2\right) y=\sin x$.

PART - C

Answer Any TWO Questions
19. (i) A field \vec{F} is of the form $\vec{F}=\left(6 x y+z^{3}\right) \vec{\imath}+\left(3 x^{2}-z\right) \vec{\jmath}+\left(3 x z^{2}-y\right) \vec{b}$. Show that \vec{F} is conservative field.
(ii) Prove that $\nabla \cdot\left[\nabla r^{n}\right]=n(n+1) r^{n-2}$.
20. (i)Evaluate $\iint_{S} \vec{F}$. $\hat{n} d s w h e r e ~ \vec{F}=z \vec{\imath}+x \vec{\jmath}-3 y^{2} z \ddot{\| I I I}$ and Sis the surface of the cylinder $x^{2}+y^{2}=$ 16included in the first octant between $z=0$ and $z \geqslant 5$. (10)
(ii) Using Green's theorem, evaluate $\oint_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) \quad d y$ where C is the closed region bounded by $x=0, y=0, x+y=1$.
21. Verify Gauss divergence theorem for $\vec{F}=\left(x^{2}-y z\right) \vec{\imath}+\left(y^{2}-z x\right) \vec{\jmath}+\left(z^{2}-x y\right) \vec{k}$ taken over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
22. Solve the equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$ by the method of variation of parameters.

