LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
B.Sc.DEGREE EXAMINATION -MATHEMATICS	
THIRD SEMESTER – APRIL 2019	
17UMT3MC02- VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS	
Date: 25-04-2019 Dept. No.	Max. : 100 Marks
Time: 01:00-04:00	
PART –A	
Answer ALL questions	(10 X 2 = 20 Marks)
1. Find the unit vector normal to the surface $x^2 + 3y^2 + 2z^2 = 6$ at the point $(2, 0, 1)$.	
2. Find the value of 'a' so that the vector $\vec{F} = (z+3y)\vec{i} + (x-2z)\vec{j} + (x+az)\vec{k}$ is solenoidal.	
3. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = k^2 \vec{\iota} + y^2 \vec{j}$ along the line $y = x$ from $A(0, 0)$ to $B(1, 1)$.	
4. Show that the value of the integral $\int_C \vec{F} \cdot d\vec{r}$ is independent of the path C, where $\vec{F} = (e^x z - e^x z - e^x z)$	
$(2xy)\vec{i} + (1-x^2)\vec{j} + (e^x + z)\vec{k}.$	
5. State Stoke's theorem.	
6. Show that $\iint_S \vec{r} \cdot \hat{n} dS = 3V$, where <i>V</i> is the volume enclosed by a closed surface S.	
7. Solve $\frac{dy}{dx} - \frac{y+2}{x-1} = 0.$	
8. Solve $p^2 - 5p + 6 = 0$.	
9. Find the complete integral of $(D^2 + 16)y = 2$.	
10. Convert $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = \sin(\log x^2)$ into linear differential equation with constant coefficients.	
PART – B	
Answer Any FIVE Questions	(5 X 8 = 40 Marks)
11. Prove that $div \vec{r} = 3$ and $curl \vec{r} = 0$, where \vec{r} is the position vector at the point (x, y, z).	
12. If $u = x + y + z$, $v = \overline{w^2} + y^2 + z^2$, $w = yz + zx + xy$, Prove that (∇u) . $(\nabla v \times \nabla w) = 0$.	

- 13. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $|\vec{r}| = r$, then prove that $\nabla(r^n) = nr^{n-2} \cdot \vec{r}$.
- 14. Evaluate $\int_C xydx + xy^2 dy$ by Stoke's theorem where *C* is the square in the *XY* plane with vertices (1, 0), (-1, 0), (0, 1) and (0, -1).
- 15. Solve $\frac{dy}{dx} + y\cos x = \frac{1}{2}\sin 2x$.
- 16. Solve $xp^2 yp x = 0$.
- 17. Solve $(D^2 2D + 1)y = e^{3x}$.
- 18. Solve $(D^2 + 3D + 2)y = \sin x$.

PART – C

Answer Any TWO Questions

(2 X 20 = 40 Marks)

19. (i) A field \vec{F} is of the form $\vec{F} = (6xy + z^3)\vec{\iota} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$. Show that \vec{F} is conservative field. (10)

(ii) Prove that
$$\nabla$$
. $[\nabla r^n] = n(n+1)r^{n-2}$. (10)

20. (i)Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = z \vec{i} + x \vec{j} - 3y^2 \vec{z}$ and S is the surface of the cylinder $x^2 + y^2 =$ 16 included in the first octant between z = 0 and $z \approx 5$. (10)

(ii) Using Green's theorem, evaluate $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is

the closed region bounded by x = 0, y = 0, x + y = 1.

21. Verify Gauss divergence theorem for $\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over the rectangular parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. (20)

22. Solve the equation $\frac{d^2y}{dx^2} + a^2y = \sec axby$ the method of variation of parameters.

(20)

(10`
